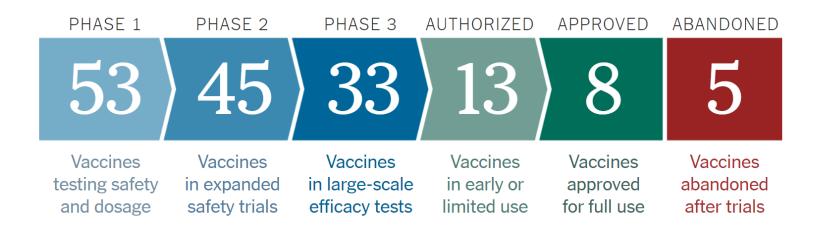
The booster in your future: when, what, and why?

Jerome H. Kim, MD International Vaccine Institute ADVAC Alumni Webinar 28 Sept 2021


International Vaccine Institute

Disclosures:

- Dr. Kim is a consultant for SK biosciences
- IVI works on the Inovio, Genexine, Cellid, Sanofi, SK bioscience, and Clover vaccines in human clinical trials

The COVID-19 crisis has induced vaccine innovation

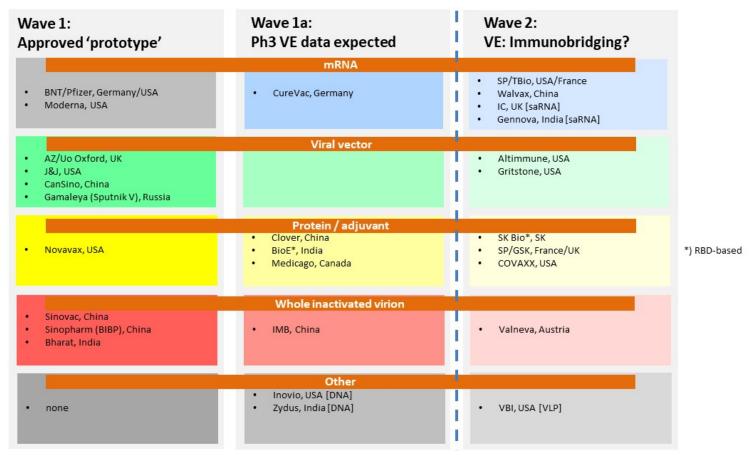
102 vaccines in human clinical testing75 vaccines in pre-clinical testing

New York Times, 13 Sept 2021

Phase III vaccines, neutralizing antibody, efficacy

MANUFACTURER	Vaccine	Dose	seroconversion	ID ₅₀	Efficacy	Regulatory approval	WHO approval
CANSINO	Ad5 spike	1 x 10 ¹¹ VP 1.5 x 10 ¹¹ VP	50% 75%	16 34	66%	China	
ZYDUS CADILA	DNA Spike	2 mg NFIS x3	80%	39	66%	India	
SINOVAC	WIV/alum	3 ug x2 (14d)	>90%	28	50%	China	
		3 ug x 2 (28d)	97%	44 ¹	65%	Brazil	wнo
		6 ug x2 (14d)	>90%	34	78%	Indonesia	approved
		6 ug x2 (28d)	>90%	~60	91%		
GAMALEYA	Ad26 spike - Ad5 spike prime boost	10 ¹¹ VP each	100%	49	92%	Russia	WHO review
	WIV/alum	6 ug x 2 (14d)	83%	62	-		
Bharat	WIV/alum+IMDG (imidazoquinoline)	3 ug x 2 (14d)	88%	66	81%	India	
		6 ug x 2 (14d)	92%	48			
	stabilized Spike-∆furin-S.PP	5 x 10 ¹⁰ VP	92%	214	66%	US	
Johnson & Johnson		1x10 ¹¹ VP	92%	243	72% (USA) 57% (RSA) 85% severe disease	EU	WHO approved
SINOPHARM	WIV/alum	4 ug x 2 (0,14)	100%	211	79%	China	WHO
		8 ug x 2 (0,28)	100%	229			approved
PFIZER/BNT	prefusion Spike	30 ug x 2	100%	267	95%	US, UK, EU	WHO approved
AstraZeneca/ JENNER/	chimp ad Spike	5 x 10 ¹⁰ VP	100%	201	62% full dose	UK, India, EU	wнo
Serum Institute / SK bio		5 x 10 ¹⁰ VP x2	100%	372	90% split dose		approved
Moderna	prefusion stabilized spike	25 ug x 2	100%	340 PRNT ₈₀	94.5%	US, EU	
		100 ug x 2	100%	654 PRNT ₈₀			WHO approved
NOVAVAX	prefusion stabilized spike/ Matrix M	5 ug x 2	100%	3350 ID ₉₉₊	89.3% (UK) 60.1% (RSA)		

< 100
100-500
> 1000


ID50 groupings CAVEAT: assays not standardized

New Platforms

- mRNA
- Adenoviral vectors
- DNA

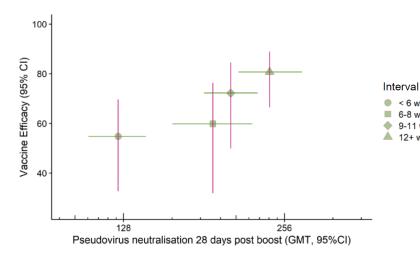
Current and future COVID-19 vaccines

[Assumptions made based on publicly available data:

https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html

- Curevac (mRNA): 48% against COVID-19 of any severity; 53% vs disease of any severity 18-60 yo; 73% VE for moderate-severe disease
- Zydus Cadila (DNA): 67% VE (delta); 100% VE for moderate-severe disease

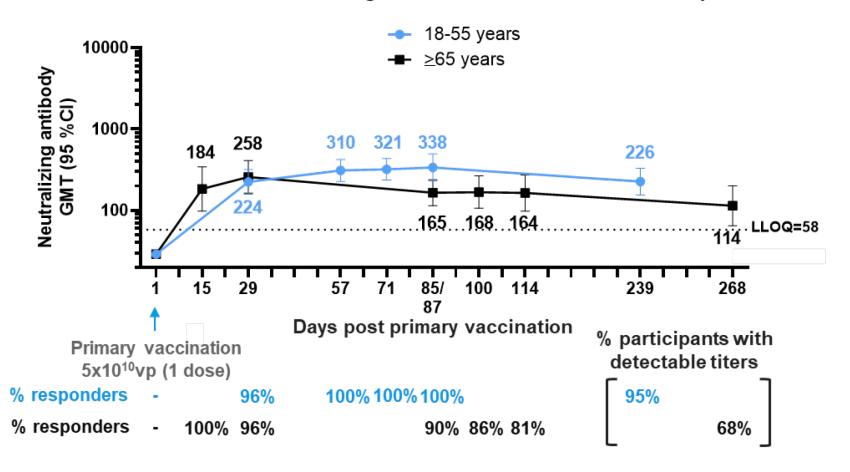
The other big questions:


- Optimization of dose, schedule, boosts
- Correlates of protection
- Effectiveness Herd immunity?
- Surveillance for mutations or new emerging coronaviruses
- Longer term safety follow-up / post-licensure safety monitoring
- Opposition to vaccination

We need to optimize schedule, dose, boosting (AZ)

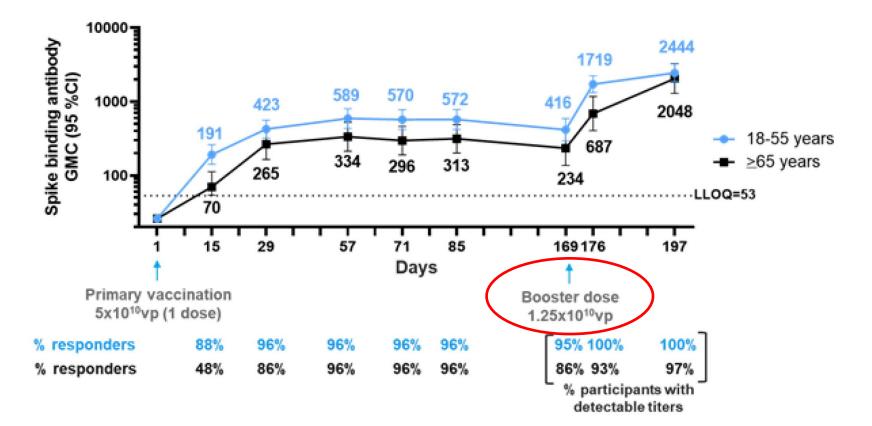
	Total number of cases	ChAdOx1 nCoV-19)	Control		Vaccine efficacy (CI*)
Voysey et al. Lancet 2020		n/N (%)	Incidence rate per 1000 person-years (person-days of follow-up)	n/N (%)	Incidence rate per 1000 person-years (person-days of follow-up)	
All LD/SD and SD/SD recipients	131	30/5807 (0.5%)	44.1 (248 299)	101/5829 (1·7%)	149.2 (247 228)	70·4% (54·8 to 80·6)†
COV002 (UK)	86	18/3744 (0.5%)	38.6 (170369)	68/3804 (1.8%)	145.7 (170 448)	73·5% (55·5 to 84·2)
LD/SD recipients	33	3/1367 (0.2%)	14.9 (73313)	30/1374 (2·2%)	150.2 (72 949)	90.0% (67.4 to 97.0)‡§
SD/SD recipients	53	15/2377 (0.6%)	56.4 (97 056)	38/2430 (1.6%)	142.4 (97499)	60.3% (28.0 to 78.2)
COV003 (Brazil; all SD/SD)	45	12/2063 (0.6%)	56.2 (77 930)	33/2025 (1.6%)	157.0 (76780)	64·2% (30·7 to 81·5)‡
All SD/SD recipients	98	27/4440 (0.6%)	56.4 (174986)	71/4455 (1.6%)	148.8 (174279)	62·1% (41·0 to 75·7)

Low dose / Standard dose efficacy was 90% vs 62% fo Standard Dose / Standard Dose

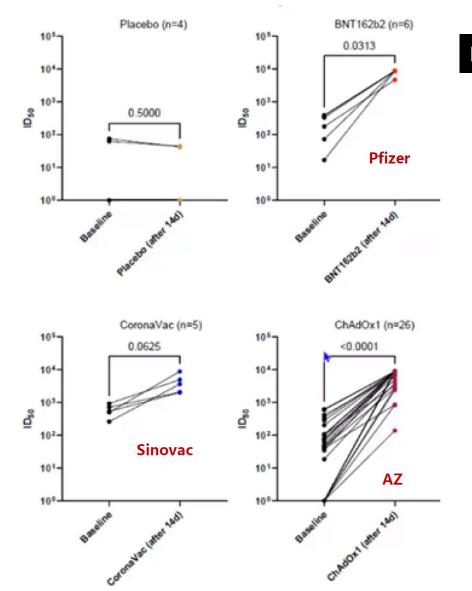

- Efficacy increases as dosing interval increases
- Note correlation between efficacy and Nab titer

As interval between doses increases:

- Neutralizing titers increase
- Efficacy point estimates increase

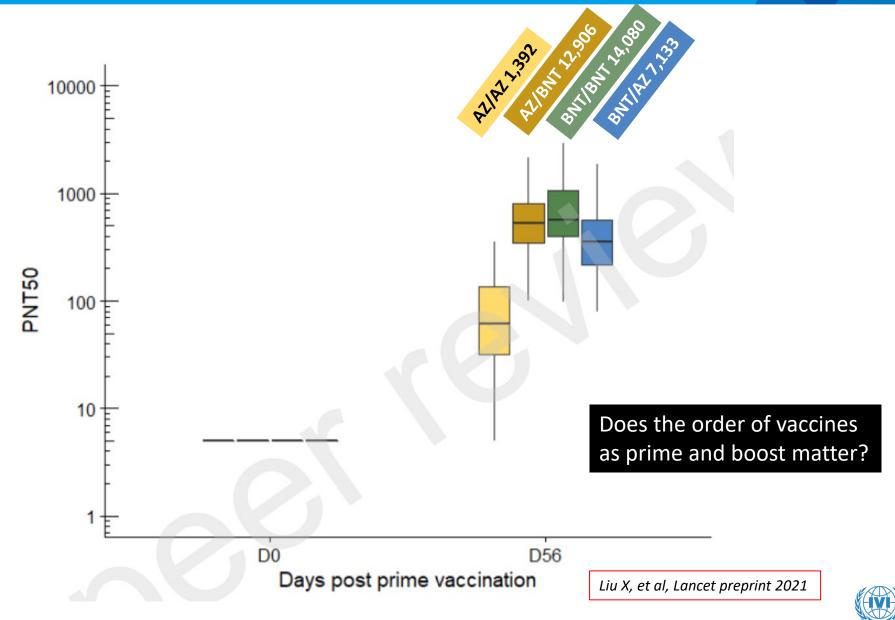

Neutralizing antibody levels overtime in 18-55 vs ≥65 year old participants who received a single dose of Ad26.COV2.S 5x10¹⁰vp

Homologous: Significant boosting after 2d dose of Ad26.COV2.S

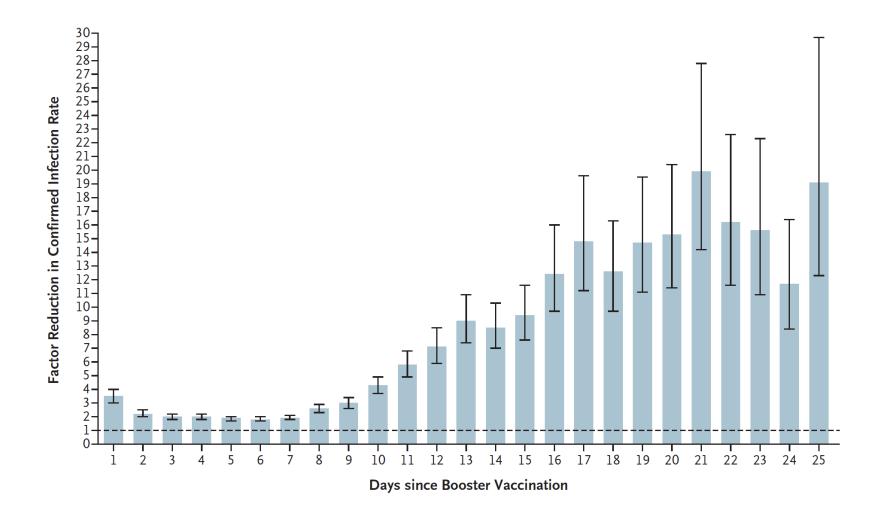

Spike binding antibody levels in 18-55 vs ≥65 year old participants who received one dose of 5x10¹⁰vp as primary regimen and a 1.25x10¹⁰vp booster dose at 6 months

9x increase in Nab after 2d dose of Janssen

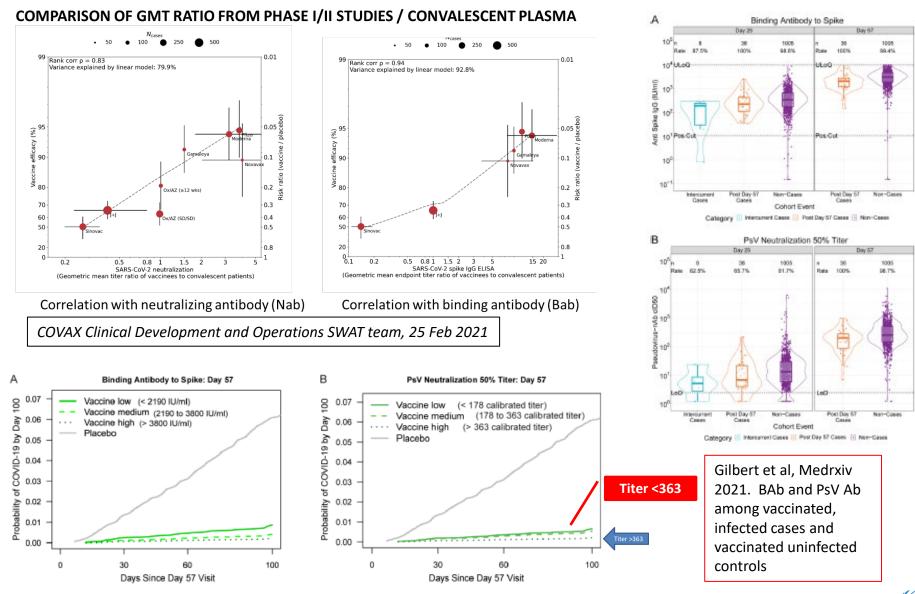
Homologous vs heterologous boosting: Sinovac



Boosting after Sinovac primary series


WHO SAGE July 2021

Homologous v heterologous: Pfizer and AZ


Booster vaccination with BNT162b2 reduces infection

Bar-on et al, NEJM 2021

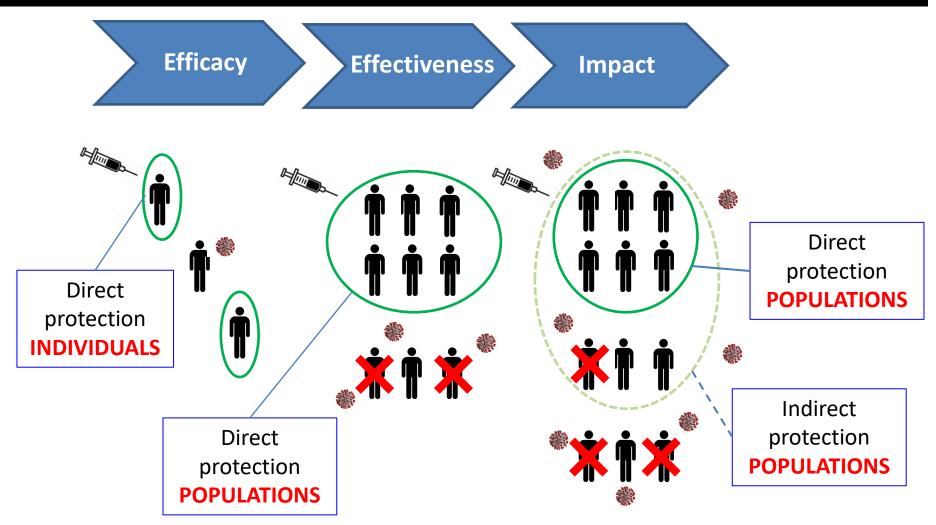
Immune correlates of protection (ICP): NAb or BAb?

What does an immune correlate of protection tell us about long-term protection?

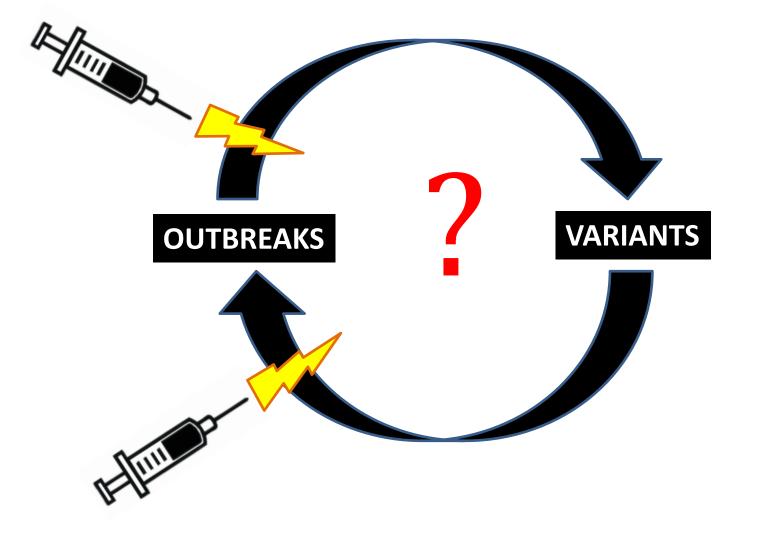
13

Efficacy, effectiveness, herd immunity

Approximate Basic Reproduction Numbers (in Developed Countries) and Implied Crude Herd Immunity Thresholds (*H*, Calculated as 1-1/R₀), VE, E for Selected Diseases

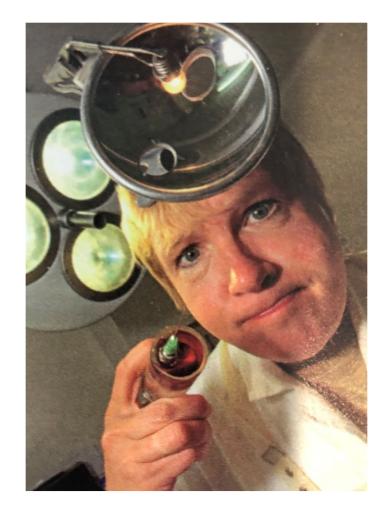

Infection	Basic Reproduction Number (R₀)	Herd Immunity Threshold (%)	Vaccine Efficacy (%)	Effectiveness	References	
Diphtheria	6-7	85	97	>95	70,71	_
Measles	12-18	55-94	94	90-95	71	
Mumps	4-7	75-86	95	78	71	The vaccines have
Pertussis	12-17	92-94	70-90	75-85	71	been shown to
Polio	12-15	50-93	80-90	>90	71	
Rubella	6-7	83-85	94-95	>95	71	prevent disease,
Smallpox	5-7	80-85	90-97	?	71	not infection or
Ebola	1.5-2.5	33-60	95-100	70	65	transmission. Herd
Varicella	8-10	87-90	90-98	>95	71	immunity is about
Spanish flu 1918	2-3	50-67	NA	NA	72	protection from transmission.
Cholera	1-2	50%	42-66%	86%	73-75	
SARS-CoV-2	2.5 – 5.8	60-83	60-95%	?	72,76	

³US CDC Pink Book, but no formal controlled trials


Will boosters affect infection or transmission?

That is, do they prevent acquisition and lower viral load in vaccinees post infection?

Can boosters break the outbreak – variants cycle?



Boosts/Mix & Match

- Homologous: it does increase Nab levels
- Heterologous: give the AZ first not Pfizer
- Does increasing Nab increase protection after boosting: vs infection or severity of disease?
- Does decreased effectiveness imply waning immune response or changing variants?
- Could random mixing and matching hurt?
- Boosters should be subject to systematic not empirical testing

Should we vaccinate everyone before we give boosters to those who are not elderly or immune compromised or present particular risk of acquisition or transmission?

IVI is an International Organization dedicated to Global Health

Global Vaccine Research Institute

- HQ and labs at Seoul National University
- Field programs in 28+ countries: Asia, Africa, Latin America
- 23 nationalities in workforce of 184

OECD-recognized International Organization (not for profit)

- UNDP initiative
- First international organization in Korea (1997)
- 36 countries and WHO as state parties (Madagascar, Argentina, Colombia, UAE, and Spain pending final submission to UN)

Thank you for your attention!

