# IMMUNOLOGICAL BENEFITS OF MRNA AND POTENTIAL APPLICATIONS

ADVAC Alumni Webinar November 4, 2021

> Barney S. Graham, MD, PhD @BarneyGrahamMD Former Deputy Director Vaccine Research Center, NIAID, NIH

# **Disclosures**

- Inventor on vaccine patents for:
  - Coronaviruses
  - Respiratory syncytial virus
  - Influenza virus
  - Nipah and other paramyxoviruses
  - Zika
- Inventor on monoclonal antibody patents for:
  - Ebola
  - SARS-CoV-2 and other coronaviruses

# **History of mRNA Therapeutics (Pre-COVID)**



Verbeke et al. Nanotoday 2019

### **mRNA** immunization



Nelson et al. Sci Adv 2020

### **mRNA Design Options**

**Conventional mRNA Vaccines** 



Self-Amplifying mRNA Vaccines



### **Elements of mRNA Design**



Chaudhary et al. Nat Rev Drug Discovery 2021; Aug 25;1-22.

# **Lipid Components of LNPs**



Chaudhary et al. Nat Rev Drug Discovery 2021; Aug 25;1-22.

# **Comparison of BioNTech and Moderna LNPs**

| Description                  | Pfizer-BioNTech COVID-19 vaccine                                                 | Moderna COVID-19 vaccine                                                                      |  |  |
|------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|
| mRNA                         | Nucleoside-modified mRNA encoding the viral spike (S) glycoprotein of SARS-CoV-2 | Nucleoside-modified mRNA encoding the viral spike<br>(S) glycoprotein of SARS-CoV-2           |  |  |
| Lipids                       | 2[(polyethylene glycol-2000]-N,N-<br>ditetradecylacetamide                       | PEG2000-DMG: ,2-dimyristoyl-rac-glycerol, methoxypolyethylene glycol                          |  |  |
|                              | 1,2-distearoyl-sn-glycero-3-phosphocholine                                       | 1,2-distearoyl-sn-glycero-3-phosphocholine                                                    |  |  |
|                              | Cholesterol                                                                      | Cholesterol                                                                                   |  |  |
|                              | (4-hydroxybutyl)azanediyl)bis(hexane-6,1-<br>diyl)bis(2-hexyldecanoate)          | SM-102: heptadecan-9-yl 8-((2-hydroxyethyl) (6-oxo-6-<br>(undecyloxy) hexyl) amino) octanoate |  |  |
| Salts,<br>sugars,<br>buffers | Potassium chloride                                                               | Tromethamine                                                                                  |  |  |
|                              | Monobasic potassium phosphate                                                    | Tromethamine hydrochloride                                                                    |  |  |
|                              | Sodium chloride                                                                  | Acetic acid                                                                                   |  |  |
|                              | Dibasic sodium phosphate dihydrate                                               | Sodium acetate                                                                                |  |  |
|                              | Sucrose                                                                          | Sucrose                                                                                       |  |  |

EUA fact sheet

# **Vaccine Modalities – Pros and Cons**

|                        | Vectors | DNA | mRNA | Protein | Whole virus |
|------------------------|---------|-----|------|---------|-------------|
|                        |         |     |      | A       | J.S.        |
| Previously licensed    | +/-     | -   | -    | +       | ++          |
| Stability              | ++      | ++  | +/-  | +       | +           |
| Rapid manufacturing    | +       | ++  | +++  | +/-     | +/-         |
| Antibody               | +       | +/- | ++   | +++     | ++          |
| CD8+ T cells           | ++      | +   | ++   | -       | -           |
| CD4+ Th1               | ++      | ++  | ++   | +/-     | +/-         |
| Tfh                    | +       | +/- | ++   | +       | +           |
| Nuclear entry required | +       | +   | -    | -       | +/-         |
| Rare adverse events    | +       | +/- | +/-  | -       | +           |
| Anti-vector immunity   | +       | -   | -    | -       | -           |
| CD4+ Th2               | +/-     | +/- | +/-  | +       | +           |
| Cell culture           | +       | -   | -    | +       | +           |

# **Vaccine Modalities – Pros and Cons**

|                        | Vectors | DNA | mRNA | Protein | Whole virus |
|------------------------|---------|-----|------|---------|-------------|
|                        |         |     |      | A       | J.S.        |
| Previously licensed    | +/-     | -   | +    | +       | ++          |
| Stability              | ++      | ++  | +    | +       | +           |
| Rapid manufacturing    | +       | ++  | +++  | +/-     | +/-         |
| Antibody               | +       | +/- | ++   | +++     | ++          |
| CD8+ T cells           | ++      | +   | ++   | -       | -           |
| CD4+ Th1               | ++      | ++  | ++   | +/-     | +/-         |
| Tfh                    | +       | +/- | ++   | +       | +           |
| Nuclear entry required | +       | +   | -    | -       | +/-         |
| Rare adverse events    | +       | +/- | +/-  | -       | +           |
| Anti-vector immunity   | +       | -   | -    | -       | -           |
| CD4+ Th2               | +/-     | +/- | +/-  | +       | +           |
| Cell culture           | +       | -   | -    | +       | +           |

# **Relative Efficacy of Vaccine Modalities**



Adapted from Miles Davenport University of New South Wales

# **Vaccine-Associated Enhanced Respiratory Disease**



### Multiple Vaccine and Therapeutic Applications in Development

- Individual proteins
- Multicomponent vaccines
- Membrane-anchored
- Secreted

- Self-assembling particle-based
- Cancer vaccines
- mAb delivery
- Combination vaccines



# **Organizing for Pandemic Preparedness**



Graham & Sullivan. Nature Immunology 2018

# **The Cellular Revolution in Africa**

#### **Cell Phone Ownership Surges in Africa**

Adults who own a cell phone



Source: Spring 2014 Global Attitudes survey. Q68.

#### PEW RESEARCH CENTER

# Africa not just a mobile-first continent – it's mobile only

Toby Shapshak and Special to CNN Updated 12:07 PM EDT, Thu October 4, 2012

- Mobile money transactions
- Authentication of products
- Competitive pricing
- Communicating news
- Community organizing
- Real time information

### **The Future of Manufacturing**







- mRNA rapid manufacturing by chemical synthesis is a platform technology
- It potently induces antibody and CD8+ T cells and promotes Th1 and Tfh
- COVID-19 data suggests mRNA is safe and efficacious
- No anti-vector immunity
- Stability and supply chain is improving
- Small footprint, small batch manufacturing is well suited for LMICs
- Room for improvement in codon selection, secondary RNA structure, downstream processing, lipid composition, formulation, and delivery
- mRNA is not magic antigen design is critical

# Questions?

# **Structure-guided Stabilization of HKU1 CoV Spike**



# **COVID-19 VACCINE & MAB DEVELOPMENT**



mAb555 – 5 months to phase 3

### **High Quality Protein is the Beginning for Everything**



# **Foundation for rapid COVID-19 vaccine development**





#### Immunogenicity

Protection

# **Phase 3 Efficacy Data for COVID-19 mRNA Vaccines**

### Vaccine efficacy



Baden LR et al. NEJM 2020 Polack FP et al. NEJM 2020

### **Real World Effectiveness Estimates from Israel**



Haas EJ et al. Lancet Infect Dis 2021; 22:S1473-3099 (21)00566-1. doi: 10.1016/S1473-3099(21)00566-1.